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Disentangling geometric and dissipative origins of negative Casimir entropies
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Dissipative electromagnetic response and scattering geometry are potential sources for the appearance of a
negative Casimir entropy. We show that the dissipative contribution familiar from the plane-plane geometry
appears also in the plane-sphere and the sphere-sphere geometries and adds to the negative Casimir entropy
known to exist in these geometries even for perfectly reflecting objects. Taking the sphere-sphere geometry as an
example, we carry out a scattering-channel analysis, which allows us to distinguish between the contributions of
different polarizations. We demonstrate that dissipation and geometry share a common feature making possible
negative values of the Casimir entropy. In both cases there exists a scattering channel whose contribution to the
Casimir free energy vanishes in the high-temperature limit. While the mode-mixing channel is associated with the
geometric origin, the transverse electric channel is associated with the dissipative origin of the negative Casimir
entropy. By going beyond the Rayleigh limit, we find even for large distances that negative Casimir entropies
can occur also for Drude-type metals provided the dissipation strength is sufficiently small.
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I. INTRODUCTION

The specific heat of a system coupled infinitely weakly
to a thermal heat bath always has to be positive. This
statement derives directly from the fact that the specific heat
is proportional to the variance of the system energy. By
appropriately integrating the specific heat, it follows that also
the entropy has to be positive. Nevertheless, there are a number
of situations in which the existence of a negative specific heat
or a negative entropy is discussed.

Such a situation immediately arises when the coupling
between the system and the heat bath is no longer infinitely
weak [1,2]. Then, the specific heat of the system can be defined
as the difference between the specific heat of the system plus
heat bath on the one hand and the specific heat of the heat
bath alone on the other hand. While there is no reason why
the difference of two positive numbers has to be positive,
one would typically expect that coupling additional degrees
of freedom will increase the specific heat. The difference
of specific heats just introduced is therefore expected to be
positive. The same reasoning applies to the entropy.

A notable exception is the damped free particle, for which
under appropriate circumstances, the specific heat can become
negative [1,3–5]. An interesting feature of this system consists
in the fact that its properties depend on the dimensionless
ratio kBT /�γ , where T is the temperature and γ the damping
constant, while kB and � are the Boltzmann constant and
the Planck constant, respectively. As a consequence, and in
contrast to common expectations, decreasing the damping
constant γ will render the free particle more classical and shift
the transition to the quantum behavior to lower temperatures. A
negative specific heat in the sense just discussed is also found
in certain systems in condensed-matter physics and related
fields [6–10].
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Another important case where negative entropies give rise
to considerable interest is the Casimir effect, which we will
consider in more detail in the present paper. Even though
experimentally the Casimir force is much more relevant than
the Casimir entropy, the former contains a significant zero-
temperature contribution while the latter allows us to focus on
the effect of thermal photons, thereby highlighting nontrivial
aspects of quantum statistical mechanics.

Suppose that we consider the Casimir interaction between
two objects. With each of the objects as well as with the
combination of the two objects we can associate an entropy
as the difference between the entropy of the electromagnetic
field in the presence of the object(s) and the entropy of the free
electromagnetic field. The Casimir entropy is an interaction
entropy, which then is obtained by subtracting the entropies of
the two individual objects from the entropy of the two objects.
While individual entropies are not finite, the Casimir entropy
yields a finite value.

One potential source of a negative Casimir entropy is
the coupling of the electromagnetic field to the electrons in
the scattering objects. These electrons undergo a dissipative
motion and therefore the electromagnetic response of the
objects is characterized by a damping constant γ . The presence
of dissipation inside the scatterers leads to a suppressed reflec-
tivity of transverse electric (TE) modes at low frequencies
while the scattering of transverse magnetic (TM) modes is not
affected significantly. As a consequence, in the plane-plane
geometry a reduction of the Casimir force [11] and Casimir
entropy by a factor of two is found at high temperatures. The
possibility of a negative Casimir entropy has been the subject
of an extensive debate over more than a decade [12–30].

A thorough understanding of the role of dissipation in the
Casimir effect is of considerable interest for the interpretation
of experiments. Presently, there still exists disagreement about
whether the dissipative low-frequency part of the electromag-
netic response is relevant or not. While some experiments
are interpreted in terms of the dissipation-less plasma model
[31,32], other experiments are interpreted in terms of the Drude
model, which includes dissipation [33,34]. At this point, it is
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useful to recall that a nonvanishing value of γ is required for
the Lifshitz formula [35] to be applicable, as shown explicitly
by analyzing the properties of the electromagnetic modes in the
complex plane and their contributions to the radiation pressure
[36].

Most Casimir force measurements are carried out in the
plane-sphere geometry with a surface-to-surface distance
between 0.1 and a few micrometers. Depending on the
experiment, the radius of the sphere or the radius of curvature
of a spherical segment ranges from 20 μm [37,38] to about
20 cm [39]. The latter case is rather close to a configuration
of two parallel plates, where TE and TM modes do not mix.
However, with decreasing sphere radius, polarization mixing
becomes increasingly relevant and it is important to understand
how the occurrence of negative Casimir entropies depends on
dissipation in the plane-sphere and sphere-sphere geometry.

The extension of the discussion of the negative Casimir
entropy due to dissipation beyond the plane-plane geometry is
not the only purpose of this paper. In fact, it has been known
for some time that negative Casimir entropies can arise for the
plane-sphere [23,24,26] and the sphere-sphere [28] geometry,
even for perfect conductors. An important question, therefore,
concerns the relative status of the negative Casimir entropies
due to dissipation on the one hand and due to geometry on the
other hand.

Recently, it was shown that the negative Casimir entropy in
the perfect metal plane-sphere and sphere-sphere geometries
can be traced back to the mixing between the TE and TM
modes of the electromagnetic field [29,30]. This identification
became possible by realizing that negative Casimir entropies
are most pronounced at large distances between the scattering
objects. Then, within a scattering formalism, it is sufficient
to consider one round-trip of electromagnetic waves between
the scatterers and a decomposition into the various scattering
channels becomes possible.

In Refs. [29,30] it was argued that in the large-distance
limit two Drude-type metal objects will not allow for a
negative Casimir entropy because the reflection of the TE
modes is strongly suppressed and only a positive contribution
of TM modes is left. This regime can be attained for any
given damping strength by making the distance between the
scattering objects sufficiently large. On the other hand, for any
given distance of the objects, one can, at least in principle,
make the damping strength so small that a negative Casimir
entropy ensues.

In order to disentangle the contributions to a negative
Casimir entropy arising from dissipation and geometry, we will
go beyond the electric dipole approximation, i.e., the Rayleigh
limit [40] employed in Ref. [29]. While we will assume the
distance d between the scattering objects to be large compared
to the radii of the spherical objects involved, we will allow
for damping strengths so small that a dissipative contribution
to the negative Casimir entropy can occur in addition to the
geometric contribution.

In Sec. II, we start by sketching the formalism required
for the polarization channel analysis introduced in Ref. [29].
By considering the Casimir entropy for the plane-plane,
sphere-plane, and sphere-sphere geometries, we then illustrate
how negative Casimir entropies of dissipative and geometric
origin manifest themselves in the temperature dependence of

the Casimir entropy. In Sec. III, the contributions from the
various scattering channels are analyzed within the dipole
approximation but beyond the Rayleigh limit. The approx-
imation of a single scattering round-trip between the two
scattering objects allows us to disentangle dissipation and
geometry as sources of a negative Casimir entropy and at
the same time to identify common features. In Sec. IV, we go
beyond the single round-trip approximation and demonstrate
that repeated scattering round-trips and, for perfect conductors,
higher multipoles tend to suppress negative Casimir entropies.
In Sec. V we present our conclusions. An appendix collects
some formulas needed for the evaluation of the Casimir
entropy within the scattering formalism.

II. DISSIPATIVE AND GEOMETRICAL INFLUENCE
ON CASIMIR THERMODYNAMICS

The Casimir entropy is obtained from the Casimir free
energy F by means of the usual thermodynamic relation,

S = −∂F
∂T

. (1)

Within the multiple-scattering theory [41–44], the Casimir free
energy can be expressed as

F = kBT

2

∞∑
n=−∞

Tr(ln[1 − M(|ξn|)]), (2)

with the Matsubara frequencies ξn = 2πnkBT /�. The matrix
M describes round-trips of electromagnetic waves between
all involved scatterers at imaginary frequencies iξn.

As we will focus on the sphere-sphere and plane-sphere
geometries, the trace in Eq. (2) can be taken in a spherical
wave basis with the angular part given by spherical harmonics
of degree � and order m. In view of the axial symmetry of
the geometries considered here, m is conserved during the
scattering process. The round-trip operator in a corresponding
subspace,

M(m) = R(m)
1 T (m)

12 R(m)
2 T (m)

21 , (3)

can be expressed as product of translation operators Tij from
the reference frame of object j to that of object i and reflection
operators Ri associated with object i. For reference, explicit
expressions for the sphere-sphere geometry involving Mie
coefficients and spherical wave translation formulas are given
in the Appendix.

For large distances between the scattering objects, all
matrix elements of the round-trip operator M will be much
smaller than one. The Casimir free energy Eq. (2) can then be
linearized,

F ≈ −kBT

2

∞∑
n=−∞

∞∑
m=−∞

TrM(|m|)(|ξn|), (4)

thereby retaining only contributions from single round-trips.
Within this approximation it is possible to decompose the
Casimir free energy F and the Casimir entropy S into con-
tributions from the different scattering channels and thereby
to gain physical insight [29,30]. Of particular interest will be
the channel where the TE polarization is conserved during the
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round-trip and the polarization-mixing channel where each of
the two objects scatters a different polarization.

Furthermore, for sufficiently large separations d/R � 20,
the dipole approximation applies to the Casimir entropy and
we can restrict ourselves to � = 1 and |m| = 0,1 (see Figs. 5
and 7 below). We will make use of the single round-trip dipole
approximation in the present section as well as in the following
Sec. III. Its range of validity will be discussed in Sec. IV.

In order to obtain a first idea of the interplay between the
dissipative and geometric contributions to the negative Casimir
entropy in the plane-sphere and sphere-sphere geometries, we
compare with the plane-plane geometry where the negative
Casimir entropy is solely of dissipative origin. Apart from
the special case of perfectly conducting metals (P), we
will consider nonmagnetic Drude-type (D) metals with the
frequency-dependent permittivity,

ε(ω) = 1 − ω2
P

ω(ω + iγ )
. (5)

Here, γ and ωP are the damping constant and the plasma
frequency, respectively, corresponding to a dc conductivity
σ0 = ω2

P /γ . While ωP determines the frequency scale beyond
which the metal becomes transparent, a finite value of σ0 results
in a vanishing reflectivity of the TE modes at zero frequency.

Figure 1 shows the temperature dependence of the Casimir
entropy for the three geometries indicated by the insets.
The entropy is scaled by its high-temperature value SP

HT for
perfectly conducting metals. A dimensionless temperature is
defined by means of the distance d between the reference
frames of the two scattering objects. The three solid lines
correspond to Drude-type metals with γ d/c = 10−2, 102, and
104 increasing from bottom to top and ωP d/2πc = 400. Here,
c is the speed of light. The lower (blue) curve and the upper
(red) curve thus correspond to good and bad conductors,
respectively. As a reference, the case of a perfectly conducting
metal is depicted as dashed line.

We start by recalling in Fig. 1(a) the main features of the
Casimir entropy for Drude-type metals in the plane-plane
geometry. It is well known that a finite dc conductivity
suppresses the zero-frequency contribution of the TE modes,
resulting in a reduction 
STE

HT of the Casimir entropy at high
temperatures by a factor of two with respect to the case of an
infinite dc conductivity [11]. The arrows in Fig. 1 visualize
the effect of this missing zero-frequency contribution to the
Casimir entropy.

Since for perfectly conducting metals the Casimir entropy
decreases with decreasing temperature, the missing zero-
frequency contribution of the TE modes exceeds their contri-
bution at finite temperatures. As a consequence, at sufficiently
low temperatures, the Casimir entropy for Drude-type metals
becomes negative, provided the dc conductivity is sufficiently
large. For the smallest value of the damping constant γ in
Fig. 1(a) the entropy curve over a large temperature range
resembles closely that for a perfect conductor except for the
entropy shift 
STE

HT.
The Casimir entropy approaches its vanishing zero-

temperature value only when the temperature falls below
a temperature of the order of �γ /kB [21]. The middle
(black) curve therefore comes close to zero at much higher
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FIG. 1. (Color online) The Casimir entropy S scaled by its high-
temperature value SP

HT for perfect conductors is shown as a function
of temperature for the (a) plane-plane geometry, (b) sphere-sphere
geometry, and (c) plane-sphere geometry. While the dashed lines
represent the entropy for perfectly conducting objects, the solid lines
correspond to Drude-type conductors with the damping constant
γ d/c = 10−2, 102, and 104 increasing from bottom to top and the
plasma frequency given by ωP d/2πc = 400. The sphere radii are
chosen as R = d/20. The arrows indicate the effect of the missing
zero-frequency contribution to the Casimir entropy for Drude-type
metals with respect to perfect conductors.

temperatures than the lower (blue) curve. This behavior is
reminiscent of the damped free particle discussed in the
introduction where the temperature scale is also set by the
damping constant γ .

A reduction of the Casimir entropy at high temperatures as
well as negative values at lower temperatures with a crossover
to vanishing Casimir entropy on a temperature scale given by
γ are also visible for the sphere-sphere geometry in Fig. 1(b)
and the plane-sphere geometry in Fig. 1(c). Since the two
geometries share the same qualitative features, we restrict the
latter figure to negative values of the Casimir entropy. In both
figures, the sphere radii are chosen as R = d/20 to ensure the
validity of the single round-trip dipole approximation.
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There are quantitative differences in the temperature de-
pendence of the Casimir entropy for the three geometries.
While the temperature scale on which the Casimir entropy
approaches zero at low temperatures clearly increases with
increasing damping constant γ , its value depends on the
scattering geometry. In addition, the reduction of the Casimir
entropy at high temperatures amounts only to 1/3 for the
plane-sphere geometry and 1/5 for the sphere-sphere geometry
instead of 1/2 for the plane-plane geometry. This reduction
is a consequence of the fact that for a perfectly conducting
sphere the reflectivity of the TE modes is only one half of the
reflectivity of the TM modes.

Besides the features already present in the plane-plane
geometry, an additional dip in the Casimir entropy appears for
the sphere-sphere and plane-sphere geometries at temperatures
where 2πkBT d/�c is of order one. This feature is of geometric
origin and survives even in the absence of dissipation as can be
seen from the dashed lines in Figs. 1(b) and 1(c). Its position
depends on the geometry and it is more pronounced in the
sphere-sphere geometry.

While for a damping constant as large as γ = 104c/d, i.e.,
for the upper (red) solid curves, the Casimir entropy still
becomes negative in the plane-sphere geometry, it remains
positive for all temperatures in the sphere-sphere geometry.
Nevertheless, even there a remnant of the dip is visible.
However, for sufficiently large damping constant γ , the
contribution to the Casimir entropy involving TE modes will
disappear [29,30]. For such strong damping, the electrons
will suffer many collisions during an oscillation period of
the electromagnetic field for all relevant frequencies. The total
irradiating power in the TE modes will then be dissipated,
thereby suppressing the reflection of these modes.

III. CHANNEL ANALYSIS BEYOND
THE RAYLEIGH LIMIT

The temperature dependence of the Casimir entropy dis-
played in Figs. 1(b) and 1(c) suggests that the negative Casimir
entropy can be separated into contributions of dissipative and
of geometric origin. This is particularly clear for the sphere-
sphere geometry for which we will demonstrate in the second
half of this section that the expected separation is indeed
possible in terms of different scattering channels. Even though
we will be able to disentangle geometric and dissipative parts,
Figs. 1(b) and 1(c) also show that the geometric contribution
depends on the damping constant appearing in the Drude-type
permittivity Eq. (5). In order to analyze this dependence, we
will need to take a closer look at the scattering properties of
Drude-type metal spheres.

For the sphere-sphere geometry, the translation operators
T appearing in Eq. (3) restrict the relevant wave numbers
to small values with kd � 1. This cutoff is caused by the
modified spherical Bessel functions present in Eq. (A4). For
large distances d � R, one may therefore apply the Rayleigh
limit, where only dipole scattering is relevant. For perfect metal
spheres, it will be sufficient to consider only the leading term
in the expansion of the � = 1 Mie coefficients for TM modes,

aP
1 = − 2

3 (kR)3 + 1
5 (kR)5 + O(k6), (6)

as well as for TE modes

bP
1 = 1

3 (kR)3 + 1
5 (kR)5 + O(k6). (7)

Here, TM and TE scattering amplitudes are of the same order
with a relative factor of two alluded to in the previous section.

In contrast, for Drude-type metal spheres, the Mie coeffi-
cients for TM modes with � = 1,

aD
1 = −2

3
(kR)3 + 2c

σ0R
(kR)4 + O(k5), (8)

and for TE modes,

bD
1 = Rσ0

45c
(kR)4 − 1

45

[
2

21

(
σ0R

c

)2

+ σ0

γ

]
(kR)5 + O(k6),

(9)

differ in the power of kR in the leading term. The scattering
of TE modes thus becomes negligible in the Rayleigh limit.
However, the prefactor of the leading term in Eq. (9) indicates
the appearance of a new scale. As the comparison of Eqs. (8)
and (9) shows, the scattering of TE modes can only be
neglected if

Rσ0

30c
� d

R
. (10)

The applicability of the Rayleigh limit thus also depends on
the dc conductivity σ0. For a given dc conductivity, it is always
possible to reach the large-distance limit where the scattering
of TE modes can be neglected. On the other hand, for a
given distance, the Rayleigh limit ceases to hold if the dc
conductivity becomes too large.

A physical interpretation of the condition Eq. (10) can be
given in terms of the quasistatic skin depth,

δ(ω) =
(

2c2

σ0ω

)1/2

. (11)

Scattering of TE modes can thus only be neglected provided
the sphere is sufficiently small compared to the skin depth,

R �
√

15δ, (12)

in the relevant frequency range. Then, no eddy currents can be
induced and the sphere becomes transparent to the TE modes.

The breakdown of the validity of the Rayleigh regime for
a well conducting metal sphere with σ0R/c = 4π × 104 is
illustrated in Fig. 2. The ratio of Mie coefficients −bD

1 /aD
1

for dipole scattering approaches at small wave numbers the
behavior predicted by the leading terms in Eqs. (8) and (9).
At larger wave numbers, the dipole regime is entered where
the ratio of the Mie coefficients aD

1 and bD
1 approaches the

value for perfectly conducting spheres given by Eqs. (6) and
(7). Increasing the wave numbers even further, the multipole
regime is reached where first the scattering of TM modes
with � = 2 described by the Mie coefficient aD

2 becomes
relevant.

An increase in the dc conductivity will reduce the Rayleigh
regime and render the dipole regime valid at even smaller
frequencies. To ensure the validity of the Rayleigh limit, one
thus has to choose either bad conductors or go to large distances
satisfying Eq. (10). In the large-distance limit considered in
Refs. [29] and [30], it was assumed that Eq. (10) holds and that

042125-4



DISENTANGLING GEOMETRIC AND DISSIPATIVE . . . PHYSICAL REVIEW E 92, 042125 (2015)

0.01

0.02

0.05

0.1

0.2

0.5

1

10−6 10−4 10−2 100

−
bD 1

/a
D 1
,

a
D 2
/a

D 1

kR

− bD
1

aD
1

aD
2

aD
1

(6), (7)

(8), (9)

Rayleigh dipole multipole

FIG. 2. The ratios of Mie coefficients −bD
1 /aD

1 and aD
2 /aD

1 as
a function of the wave number k are shown for a Drude-type metal
sphere with radius R. The plasma frequency and the damping constant
are given by ωP R/2πc = 20 and γ /ωP = 10−4. Three different
regimes can be distinguished. In the Rayleigh regime, TE scattering
is negligible, while in the dipole regime, TE and TM scattering are
of comparable strength. In the multipole regime, the scattering of
higher multipole waves becomes relevant. The dashed lines indicate
the approximations valid in the first two regimes with references to
the corresponding equations.

the TE modes are not scattered by Drude-type metal spheres.
Under this condition, it was possible to derive analytical results
for the Casimir entropy. Here, we will allow for an arbitrary dc
conductivity and thus have to resort to a numerical evaluation
of the Casimir entropy employing the full Mie coefficients
given in the Appendix.

In the large-distance limit d � R, where the linearized
single round-trip expression for the Casimir free energy [cf.
Eq. (4)] applies, we can decompose the Casimir entropy
into contributions arising from the scattering channels char-
acterized by the polarization on the two spheres. For two
channels the polarization on the spheres is conserved along
the round-trip: TM � TM and TE � TE. In the following,
we will refer to them as TM and TE channels, respectively.
In addition, two channels correspond to polarization mixing:
TM � TE and TE � TM. Because of the symmetry of our
geometry with identical spheres, the two polarization-mixing
channels provide equal contributions and we will only consider
their sum.

Figure 3 displays the temperature dependence of the
three different contributions to the Casimir entropy scaled
by the high-temperature Casimir entropy SP

HT for perfectly
conducting spheres. The parameters equal those used in Fig. 1
but no curves for the highest dc conductivity are shown.

In Fig. 3(a), the contribution of the TM channel is depicted.
We only show the curve corresponding to γ d/c = 102 but
omit the curves for γ d/c = 104 and for perfect conductors.
According to Eqs. (6) and (8), the reflection coefficient for
TM modes depends only very weakly on the dc conductivity
and, in fact, the other curves would lie within not more than
one line width. As discussed before, at high temperatures the
TM channel contributes 4/5 of the total Casimir entropy.
The vertical axes in Fig. 3 are drawn to scale so that a
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FIG. 3. (Color online) The contributions from (a) the TM chan-
nel, (b) the TE channel, and (c) the polarization-mixing channels
to the Casimir entropy are shown as function of temperature for a
sphere-sphere geometry with d/R = 20. All contributions are scaled
by the total high-temperature Casimir entropy SP

HT for perfectly
conducting spheres. The parameters are chosen as in Fig. 1, i.e.,
the dashed lines correspond to perfect metal spheres while the solid
black and red lines correspond to Drude-type metal spheres with
γ d/c = 102 and 104, respectively, and ωP d/2πc = 400. For the sake
of clarity, panel (a) displays only one line because all other lines
deviate by not more than one line width. To facilitate the comparison
between the contributions of the three types of scattering channels,
the scales on the vertical axes are chosen to be equal.

comparison between the three contributions is facilitated.
While the TM channel largely dominates at high temperatures,
this is no longer the case at low temperatures, thus opening the
possibility for negative Casimir entropies.

The temperature dependence of the TE channel shown in
Fig. 3(b) displays the same features as the Casimir entropy
in the plane-plane geometry depicted in Fig. 1(a) once the
contribution arising from the TM modes is subtracted. We
recognize the shift between the Casimir entropies for perfectly
conducting spheres and Drude-type metal spheres at high
temperatures due to the vanishing reflectivity for the TE modes
at zero frequency. For not too small dc conductivity, i.e., the
solid black curve, the contribution to the Casimir entropy
becomes negative and goes to zero on a temperature scale
proportional to γ . For bad conductors, i.e., the red solid
curve, the contribution of the TE channel almost vanishes,
in agreement with our discussion of the Rayleigh limit. The
scattering channel analysis thus confirms that the TE modes
are not only responsible for the dissipative contribution to the
negative Casimir entropy in the plane-plane geometry, but also
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FIG. 4. The contributions of the different scattering channels to
the scaled free energy F̃ = (d/R)6F are shown as a function of
temperature. The distance between the two Drude-type metal spheres
is given by d/R = 20 and the material parameters are γ d/c = 10 and
ωP d/2πc = 400. The inset displays the low-temperature behavior of
the TE channel and demonstrates that the corresponding contribution
to the Casimir entropy vanishes in the zero-temperature limit.

in the sphere-sphere geometry. It is worth mentioning that the
same conclusion can be shown to hold true for the plane-sphere
geometry.

Polarization-mixing channels do not exist in the plane-
plane geometry but contribute to the Casimir entropy in the
plane-sphere and sphere-sphere geometries. The temperature
dependence for the latter case is shown in Fig. 3(c). From
Refs. [29] and [30] it is already known that the polarization-
mixing channels are associated with the geometric origin
of a negative Casimir entropy. Here, we can now study the
dependence of this feature as a function of the Drude damping
constant γ .

As the curves in Fig. 3(c) show, the negative Casimir
entropy tends to be increasingly suppressed with increasing
damping constant γ . In contrast to the TE channel in Fig. 3(b), a
continuous transition exists from perfectly conducting spheres,
where the negative Casimir entropy is most pronounced, to
bad Drude-type metal spheres, where the mode mixing is
significantly suppressed. Reducing the dc conductivity even
further would ultimately result in a vanishing geometric
contribution to a negative Casimir entropy [29,30].

We conclude that the geometric and dissipative contribu-
tions to a negative Casimir entropy can clearly be distinguished
by means of a scattering-channel analysis provided the single
round-trip condition is met, i.e., d � R. Nevertheless, the two
types of channels share a common feature as can be seen
from Fig. 4, where the contributions of the different scattering
channels to the Casimir free energy is shown as a function of
temperature.

The contributions of both TE and polarization-mixing chan-
nels vanish in the high-temperature limit. This behavior is in
clear contrast to the usual behavior found for the TM channel,
which yields a negative contribution decreasing linearly with
temperature at high temperatures. In view of Eq. (1) and the
fact that the contributions to the Casimir free energy at zero
temperature are negative, the temperature dependence of the

first two channels necessarily implies a negative contribution
to the Casimir entropy in some temperature range.

This common feature should not obscure their different
physical origins. For the TE channel, the contribution to the
Casimir entropy at high temperatures vanishes because of
the vanishing zero-frequency reflectivity. In contrast, for the
polarization-mixing channel, no contribution to the Casimir
entropy can occur at zero frequency where the fields cor-
responding to the two modes are either purely electric or
purely magnetic in any of the two coordinate systems centered
at each sphere. The difference in the physical mechanism
manifests itself in Figs. 3(b) and 3(c), where we observe that
the transition from a Drude-type metal to a perfect conductor
occurs continuously for the polarization-mixing channel while
it does not for the TE channel.

IV. SPHERE-SPHERE CASIMIR ENTROPY BEYOND
THE DIPOLE APPROXIMATION

So far, our discussion of the Casimir entropy has relied on
the large-distance assumption d � R. Only then it suffices to
consider single round-trips and the contributions of dissipative
and geometric origin can be added. When the distance between
the two spheres is decreased, it becomes necessary to go
beyond the dipole approximation and to allow for scattering
processes involving more than a single round-trip.

In this section, we first discuss the role of multiple round-
trip contributions for perfectly conducting spheres and thus
concentrate on the geometrically induced negative Casimir
entropy. In a second step, we add dissipation by considering
Drude-type metal spheres.

Figure 5 shows the Casimir entropy as a function of the
distance d between two perfectly conducting spheres. The
temperature is kept fixed at 2πkBT R/�c = 1. The black
points correspond to the full calculation based on Eq. (2),
including multipoles up to �max = 60 while the gray points
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FIG. 5. The Casimir entropy S is presented as a function of the
distance d between two perfectly conducting spheres of radius R

at 2πkBT R/�c = 1 for different levels of approximation. Results
obtained within the single round-trip approximation are displayed as
white and gray points. While the first ones correspond to the dipole
approximation, the latter include higher multipoles up to �max = 60.
The numerically exact result depicted by black points is obtained
on the basis of Eq. (2) with �max = 60. The inset shows the relative
difference of the dipole approximation Sdip and the exact result Sex.
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FIG. 6. The scaled Casimir entropy S̃ = (d/R)6S as a function
of temperature is shown as solid line accounting for multipoles up
to �max = 15. The contributions arising from dipole-dipole, dipole-
quadrupole, and quadrupole-quadrupole scattering are depicted as
dashed, dash-dotted, and dotted line, respectively. The distance
between the perfectly conducting spheres is d = 2.75R.

correspond to the single round-trip approximation Eq. (4). The
white points are obtained by additionally applying the dipole
approximation.

The inset of Fig. 5 shows how the single round-trip dipole
approximation approaches the exact result for the Casimir
entropy as the distance between the two spheres is increased.
At d/R = 20, the distance chosen in the previous sections, the
relative error reaches about one percent.

At the temperature chosen here, the Casimir entropy is
positive at large distances between the two spheres. Decreasing
the distance, the entropy will eventually become negative
and go through a minimum before rising again to positive
values [28]. Such a distance dependence was also found
for the plane-sphere geometry [23,24]. Interestingly, even
the single round-trip dipole approximation (white points)
is capable of qualitatively describing this distance dependence
of the Casimir entropy.

Including higher multipoles and multiple round-trips yields
significant positive contributions to the Casimir entropy,
in particular at relatively small distances between the two
spheres. However, already the single round-trip approximation
(gray points) provides a good description almost down to
distances where the minimum of the Casimir entropy is
reached. Only at even smaller distances multiple round-trip
contributions become relevant (black points).

Figure 5 clearly demonstrates that for not too small
distances d the main correction to the single round-trip
dipole approximation consists in the contribution of higher
multipoles. We therefore analyze in Fig. 6 how the dipole-
quadrupole and quadrupole-quadrupole channels contribute
to the temperature dependence of the Casimir entropy. The
distance between the two perfectly conducting spheres is
chosen as d = 2.75R, i.e., close to the minimum of the Casimir
entropy in Fig. 5.

The solid line depicts the Casimir entropy, including
multipoles up to �max = 15, while the contributions due to
dipole-dipole, dipole-quadrupole, and quadrupole-quadrupole
scattering are displayed by the dashed, dash-dotted, and dotted
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FIG. 7. The Casimir entropy S is presented as a function of
the distance d between Drude-type metal spheres of radius R at
2πkBT R/�c = 1 within the single round-trip approximation. The
material parameters correspond to those of the best conductor
represented by a blue curve in Fig. 1, i.e., ωP R/2πc = 20 and
ωP /2πγ = 4 × 104. The white points correspond to the dipole
approximation while the gray points include higher multipoles up
to �max = 60. Numerically exact results accounting for multiple
round-trips cannot be distinguished from the gray points in this figure
and are therefore not shown. The inset displays the relative difference
of the dipole approximation Sdip and the exact result Sex.

lines, respectively, and comprise all polarization channels. In
agreement with Ref. [29] we find that the negative Casimir
entropy is caused exclusively by dipole scattering. In fact,
as can be seen from Fig. 6 for dipole-quadrupole and
quadrupole-quadrupole scattering, higher multipoles lead to
positive Casimir entropy contributions. Still, an analysis of the
polarization channels involved in the multipole contributions
depicted in Fig. 6 reveals that they have the same signs
as the corresponding dipole-dipole contributions. However,
for higher multipoles the negative contribution from the
polarization-mixing channel is shifted to larger temperatures
where the polarization-conserving channels dominate, yield-
ing an overall result with positive sign.

We now turn to the dissipative case and consider Drude-
type metal spheres. The distance dependence of the Casimir
entropy is depicted in Fig. 7 for 2πkBT R/�c = 1. The
material parameters correspond to those of the best conductor
considered in Sec. II and represented by the blue line in Fig. 1.
Only results within the single round-trip approximation are
displayed in Fig. 7, with white and gray points representing,
respectively, the dipole approximation and the Casimir entropy
with higher multipoles included. For the data presented here,
the numerically exact result accounting for multiple round-
trips practically coincides with the gray points.

In contrast to perfectly conducting spheres, the contribu-
tions arising from higher multipoles are now negative and lead
to a Casimir entropy increasing monotonically with distance.
While the geometrically induced negative Casimir entropy is
only due to dipole scattering, this is not the case for the negative
Casimir entropy caused by dissipation. Here, higher multipole
scattering also contributes with negative values. This important
difference is to be expected because dissipation can give rise to
a negative Casimir entropy even in the plane-plane geometry.
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As the inset in Fig. 7 shows, the deviation of the single
round-trip dipole approximation from the numerically exact
result is comparable for both perfect conductor spheres and
Drude-type metal spheres. However, because of the missing
high-temperature contribution of the TE modes, the absolute
value of the Casimir entropy in the dissipative case exceeds
the one for perfect conductors by one order of magnitude
for the temperatures considered here. As a consequence,
multiple round-trip corrections are much less important in
Fig. 7 than they were in Fig. 5. However, in both cases, the
approximations central to our analysis—single round-trip and
dipole scattering—are well justified for the large distances
d/R = 20 chosen in the previous sections.

V. CONCLUSIONS

Dissipation and scattering geometry represent possible
sources of negative Casimir entropies. While the first mecha-
nism has been studied for quite some time in the plane-plane
geometry, the second mechanism was identified for plane-
sphere and sphere-sphere geometries with perfect conductors.
For Drude-type metals of sufficiently large dc conductivity,
we have shown the coexistence of both mechanisms by going
beyond the Rayleigh limit.

In the large-distance limit, where only single round-trips
are relevant, we employed a scattering-channel analysis to
disentangle dissipative and geometric origins of the negative
Casimir entropy. Concentrating on the sphere-sphere geome-
try, we found that dissipation acts via the TE channel as in the
plane-plane geometry. In contrast, the geometric contribution
can be traced back to the polarization-mixing channel as in the
perfectly conducting case. Although being of different physical
origin, both mechanisms are associated with a vanishing free
energy in the high-temperature limit.

Focussing on the geometrical origin of negative Casimir
entropies, we have found for perfectly conducting scatterers
that while the dipole-dipole channel can lead to a negative
contribution to the Casimir entropy, higher multipoles yield
a positive contribution. With decreasing distance between the
scatterers, the higher multipoles become dominant and the total
Casimir entropy turns positive, thereby making connection
with the plane-plane geometry for perfect conductors. In
contrast, for the dissipative mechanism leading to negative
Casimir entropies, the negative contribution is not restricted to
dipole scattering.
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APPENDIX: REFLECTION AND TRANSLATION
OPERATORS

For the reflection at a sphere, the scattering operator R
occurring in Eq. (3) is naturally represented in the spherical

multipole basis characterized by � and m. The corresponding
matrix elements are given by the Mie coefficients [40]. At
imaginary frequencies and for nonmagnetic spheres, μ = 1,
with refractive index n = √

ε, they can be expressed as

a� = (−1)�+1 π

2

nψ�(nkR)ψ ′
�(kR) − ψ�(kR)ψ ′

�(nkR)

nψ�(nkR)ξ ′
�(kR) − ξ�(kR)ψ ′

�(nkR)
(A1)

for TM polarization, and

b� = (−1)�+1 π

2

ψ�(nkR)ψ ′
�(kR) − nψ�(kR)ψ ′

�(nkR)

ψ�(nkR)ξ ′
�(kR) − nξ�(kR)ψ ′

�(nkR)
(A2)

for TE polarization. The Riccati-Bessel functions are defined
in terms of modified spherical Bessel functions of the first kind
and second kind [45], as

ψ�(ρ) = ρi�(ρ), ξ�(ρ) = ρk�(ρ). (A3)

The spherical vector wave basis refers to a coordinate
system with origin in the center of one of the spheres. A basis
change from one center to another one can be done by means
of translation formulas [46–49], which can also be expressed
in terms of imaginary wave vectors [44]. The matrix elements
of the translation operator take a relatively simple form if
the translation occurs along the z axis. Then, m is conserved
while � and the polarization P can change. For imaginary wave
numbers k, the matrix elements can be cast into the form

T PP ′
�1,�2;m(kd) = (−1)m+1(±i)�1−�2

√
π�1(�1 + 1)�2(�2 + 1)

×
�1+�2∑

�′=|�1−�2|
cPP ′
�1,�2,�′;mY

�1,�2,�
′

−m,m,0k�′(kd), (A4)

where the initial and final polarizations P and P ′, respectively,
may be equal or different. The ± sign has to be interpreted as
positive if the translation occurs in the sense of the z axis
while the negative sign applies for translations in the opposite
direction.

If the polarization is conserved, P = P ′, the coefficient
appearing in Eq. (A4) reads

cPP
�1,�2,�′;m = 2

√
2�′ + 1[�1(�1 + 1) + �2(�2 + 1) − �′(�′ + 1)],

(A5)
while for different polarizations we obtain

cPP ′
�1,�2,�′;m = ±4

√
(2�′ + 1)mkd (P �= P ′). (A6)

In the latter case, the matrix elements of the translation operator
vanish in the limit of vanishing wave number k as well as for
m = 0.

The Gaunt coefficients (see, e.g., Ref. [50]),

Y
�1,�2,�

′
−m,m,0 =

√
(2�1 + 1)(2�2 + 1)(2�′ + 1)

4π

×
(

�1 �2 �′

0 0 0

)(
�1 �2 �′

−m m 0

)
, (A7)

do not require the explicit evaluation of the two Wigner 3j

symbols but can be determined efficiently by means of
recurrence relations [51].

In the dipole limit, �1 = �2 = 1, the matrix elements of the
translation operator can be written as
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T PP
1,1;0T PP

1,1;0 = 9e−2kd

(
1

(kd)2
+ 1

(kd)3

)2

, (A8)

T PP
1,1;1T PP

1,1;1 = 9

4
e−2kd

(
1

kd
+ 1

(kd)2
+ 1

(kd)3

)2

, (A9)

T PP ′
1,1;1T P ′P

1,1;1 = −9

4
e−2kd

(
1

kd
+ 1

(kd)2

)2

. (A10)

These expressions make the suppression of large wave num-
bers mentioned in Sec. III explicit.
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